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Classical Solutions From Quantum Regime
for Barotropic FRW Model
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The quantization of gravity coupled to barotropic perfect fluid matter field with a cosmo-
logical constant is carried out. The wave function can be determined for any curvature
indexκ in the FRW minisuperspace model. The meaning of the existence of the classical
solution is discussed in the WKB semiclassical approximation.
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1. INTRODUCTION

It is a general belief that an initial singularity can be removed through the
employment of a quantum theory of gravity. However, there is no consistent theory
of gravity until now, and in this sense the problem of the initial singularity remains
of actuality.

It is well known that is possible to construct a quantum model for the universe
as a whole, through the Wheeler–DeWitt (WDW) equation, based in the ADM
decomposition of the gravity sector, which leads to a Hamiltonian approach of
general relativity, from which a canonical quantization procedure can be applied
(Halliwel, 1991). Moreover, in the Hamiltonian formalism, the notion of time is
lost (Isham, 1992), but there are some proposals by which this notion of time can be
recovered (Schutz, 1970, 1971) by coupling of the gravity sector to a perfect fluid.
In this scheme, called Schutz’s formalism, a quantization procedure is possible,
and the canonical momentum associated with the perfect fluid appear linearly in
the WDW equation, permiting to rewrite this equation in the form a Schr¨odinger
equation with a time coordinate associated with the matter field.

Recently, a convincing quantum gravity origin for inflation has been sought.
According to Bojowald (2002) a nonperturbative approach would produce the
most reliable answer as to whether or not inflation can be derived from quantum
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gravity. At the less ambitious level of minisuperspace quantum cosmology the
generality of inflation as well as the quantum creation of the universe should be
treated by analyzing the WDW equation and its physical solutions, the so-called
wave functions of the universe (Gibbons and Grishchuk, 1989).

In this way, the behavior of the scale factor may be determined in two different
forms from the quantum regime: when the wave function is time-dependent, we
can calculate the expectation value of the scale factor, in the spirit of the many
worlds interpretation of quantum mechanics (Tipler, 1986)

〈A〉t =
∫∞

0 W(A)9∗(A, t)A(t)9(A, t) d A∫∞
0 W(A)9∗(A, t)9(A, t) d A

, (1)

whereW(A) is a weight function that normalizes the expectation value. The other
way is to apply the WKB semiclassical approximation, in which case the system
follows a real trajectory given by the equation∏

q
= ∂8

∂q
, (2)

where the indexq designates one of the degrees of freedom of the system, and8

is the phase of the wave function when written as

9 = Wei8, (3)

the functionsW and8 are real functions. We follow this last procedure to obtain
the classical behavior for the scale factor, using the FRW model with a barotropic
perfect fluid and cosmological constant.

The work is organized as follows. In next section we describe the quan-
tum model with a solution for anyκ case in the minisuperspace, considering a
barotropic perfect fluid as matter field including the cosmological constant. In
Section 3, we present the classical evolution for the scale factor derived following
the semiclassical WKB procedure. Section 4 is devoted to conclusions.

2. QUANTUM MODEL

The total Lagrangian for a barotropic perfect fluid coupled to gravity using
the FRW geometry with the classical cosmological constant term is given by

Ltotal = Lgeom+ Lmatter (4)

namely

Lgeom=
√
−(4)g[R− 23] = −6A2

N

d2A

dt2
− 6A

N

(
d A

dt

)2

+ 6A2

N2

d A

dt

d N

dt

− 6κN A− 2N3A3
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= d

dt

(−6A2 Ȧ

N

)
+ 6A

N

(
d A

dt

)2

− 6κN A− 2N3A3, (5)

and the Lagrangian matter density (Pazos, 2000; Ryan, 1972)

Lmatter=
√
−(4)g

[
16πGNρ{(γ + 1)(1+ gkmUkUm)

1
2 − γ (1+ gkmUkUm)−

1
2 }

− 16πGρ(γ + 1)UmNm
]
. (6)

These results are obtained by employing the ADM form of the FRW metric

ds2 = −N2 dt2+ A2

[
dr2

1− κr 2
+ r 2(dθ2+ sin2 θdθ2)

]
, (7)

whereN is the lapse function,A is the scale factor of the model, andκ is the cur-
vature index of the universe (κ = 0,+1,−1 plane, close and open, respectively).

We also make use of the usual perfect fluid energy–momentum tensor

Tµν = pgµν + (p+ ρ)UµUν , (8)

wherep, ρ, Uµ are the pressure, energy density, and the four-velocity of the cos-
mological fluid, respectively; and using the barotropic relationshipp = γρ , γ =
constant, we have the solution for the energy density as a function of the scale
factor of the FRW universe, in the usual way

ρ = Mγ

A3(γ+1)
, (9)

whereMγ is an integration constant. InLmatterwe also choose the comoving fluid
(three-velocityUk = 0), and the gaugeNk = 0, obtaining

Lmatter= 16πGN Mγ A−3γ . (10)

Thus, the total Lagrangian density has the following form:

Ltot = d

dt

(−6A2 Ȧ

N

)
+ 6A

N

(
d A

dt

)2

− 6κN A− 2N3A3+ 16πGN Mγ A−3γ .

(11)

Following the well-known procedure to get the canonical Hamiltonian function,
we define the canonical momentum conjugate to the generalized coordinateA
(scale factor) as ∏

A
≡ ∂L

∂ Ȧ
, (12)

L =
∏

A
Ȧ− NH =

∏
A

Ȧ− N

[∏2
A

24A
+ 6κA+ 23A3− 16πGMγ A−3γ

]
,

(13)
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when

H =
∏2

A

24A
+ 6κA+ 23A3− 16πGMγ A−3γ . (14)

Performing the variation of (13) with respect toN, δL
δN = 0, implies the well-known

resultH = 0. Imposing the quantization condition and applying this Hamiltonian
to the wave function9, we obtain the WDW equation in the minisuperspace

Ĥ|9〉 = 1

24A

[
− d2

d A2
+ 144κA2+ 483A4− 384πGMγ A−3γ+1

]
|9〉 = 0.

(15)
Notice that in principle the order ambiguity in Eq. (15) should be taken into
account. This is quite a difficult problem to be treated in all its generality, since the
Hamiltonian operator in (15) must be written in a very general form to take into
account all possible order, but, at least in the minimal case in which (Hartle and
Hawking, 1983) (there are other possibilities depending on different considerations
on the operators, see the works of Christodoulakis and Zanelli, 1984a,b or Lidsey
and Moniz, 2000

A−1 d29

d A2
→ A−1+p d

d A
A−p d9

d A
= A−1

(
d29

d A2
− pA−1 d9

d A

)
, (16)

where the real parameterp measures the ambiguity in the factor ordering. There-
fore, the WDW equation can be written as follows:

−A
d29

d A2
+ p

d9

d A
− V(A)9 = 0, (17)

where

V(A) = −483A5+ 384πGMγ A−3γ+2− 144κA3. (18)

In the following we discuss some of the quantum solutions of Eq. (17) for
particular values of theγ parameter and the parameterp of factor ordering.

2.1. Inflationary Scenario

In the inflationary era, including the cosmological constant3, we choose
γ = −1. Notice that the WDW Eq. (17) can be written as

A
d29

d A2
− p

d9

d A
+ 144A3(m2A2− κ)9 = 0, (19)

where

m2 = −3
3
+ 8

3
πGM−1. (20)
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The latter relationship leads to three possible cases

1. m2 > 02

The differential equation for this subcase is

A9 ′′−1− P9 ′−1+ 144κA3(m2A2− κ)9−1 = 0 (21)

which, after the substitutionsv = m2A2− κ,9−1 = v1/2y(v), and z= 4
m2 v3/2,

turns for p = 1 into a Bessel equation with the general solution

9−1 = (m2A2− κ)
1
2
[
a0J1

3
(z)+ b0J− 1

3
(z)
]
, where z= 4

m2
[m2A2− κ]3/2

(22)

wherea0 andb0 are superposition constants.

2. m2 < 0

The differential equation for this subcase is

−A9 ′′−1+ p9 ′−1+ 144κA3(|m2|A2+ κ)9−1 = 0. (23)

For p = 1 we have a modified Bessel equation with the general solution

9−1 = (|m2|A2+ κ)
1
2
[
a1I 1

3
(z)+ b1K 1

3
(z)
]
, where z= 4

|m2| [|m
2|A2+ κ]3/2,

(24)

wherea1 andb1 are superposition constants.

3. m2 = 0

The differential equation for this situation is

−A9 ′′−1+ p9 ′−1+ 144κA39−1 = 0 (25)

which forκ = 1, has as solution the modified Bessel functions of orderν = 1+p
4

9−1 = A2ν [ A0Iν(6A2)+ B0Kν(6A2)], (26)

where A0 and B0 are superposition constants, while forκ = −1, the solution
become to be the ordinary Bessel functions

9−1 = A2ν [ A0Jν(6A2)+ B1Yν(6A2)], (27)

whereA1 andB1 are superposition constants.

2 In generalm2 is not a positive constant, see the corresponding definition (20).
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2.2. Inflationary-Like Scenario,γ = − 1
3

In this particular case, the WDW equation becomes

A
d29

d A2
− p

d9

d A
− 48A3(3A2− g)9 = 0, with g = 8πGM−1/3− 3κ (28)

which, after the substitutionsv = 3A2− g, 9 = v1/2y(v), and z= 4
√

3
33 v3/2,

yields for p = 1 a Bessel equation with the general solution

9(A) = [3A2− g]1/2

{
C0I 1

3

(
4
√

3

33
[3A2− g]3/2

)

+C1K 1
3

(
4
√

3

33
[3A2− g]3/2

)}
. (29)

whereC0 andC1 are superposition constants.

2.3. Dust Case (γ = 0,κ = 0)

For this case the WDW equation is

A
d29

d A2
− p

d9

d A
+ 48A2

(−3A3+ 8πGM0
)
9 = 0, (30)

Making the transformationsz= 8
3

√
33A3 and9 = e−

1
2 zu(z), one gets foru(z)

the confluent hypergeometric equation

z
d2 u

dz2
+ (γ − z)

du

dz
−mu= 0 (31)

wherem= 2−p
6 − 16πGM0√

33
and γ = 2−P

3 . The linear independent solutions are
(Gradshteyn and Ryzhik, 1980)

u1(z) = 1F1(m, γ ; z) (32)

u2(z) = z1−γ
1F1(m− γ + 1, 2− γ ; z) (33)

where1F1 is the degenerate hypergeometric function.
Thus, the exact solution for9 becomes

9(A) = e−
1
2 z[ A0 u1(z)+ B0 u2(z)], (34)

whereA0 andB0 are superposition constants,u1 andu2 are the functions given in
(32) and (33), respectively.
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2.4. Stiff Fluid Case (γ = 1,κ = 0)

The WDW equation

A
d29

d A2
− p

d9

d A
+ 48

(−3A5+ 8πGM1A−1
)
9 = 0, (35)

has the following exact solution

9(A) = A
1+p

2 Zν

(
4
√−33

3
A3

)
, with ν = 1

3

√(
1+ p

2

)2

− 384π GM1.

(36)
The exact expression of the wave function depends on the sign of the cosmo-

logical constant and the orderν:

• 3 > 0 andν real, the functionsZν become the modified Bessel functions,
either Iν or Kν , depending on the boundary conditions.
• 3 < 0 andν real, the functionsZν turn into the ordinary Bessel functions,

eitherJν or Yν , depending on the boundary conditions.
• 3 > 0 andν pure imaginary, the functionsZν become the modified Bessel

functions of pure imaginary order (Dunster, 1990), eitherIν or Kν , depend-
ing on the boundary conditions.
• 3 < 0 andν pure imaginary, the functionsZν become the modified Bessel

functions of pure imaginary order (Dunster, 1990), eitherJν orYν , depend-
ing on the boundary conditions.

3. THE CLASSICAL BEHAVIOR FROM WKB REGIME

Interesting results can be obtained at the level of WKB method if one performs
the transformation

∏
A→ d8

d A. Then, (14) becomes the Einstein–Hamilton–Jacobi
equation, where8 is the superpotential function that is related to the physical
potential under consideration.

Introducing this ansatz in (14) we get

H = 1

24A

[(
d8

d A

)2

+ 144κA2+ 483A4− 384πGMγ A−3γ+1

]
= 0, (37)

thus, we obtain

d8

d A
=
√
−483A4+ 384πGMγ A−3γ+1− 144κA2 (38)

the superpotential8 has following form:

8 = ±
∫ √
−483A4+ 384πGMγ A−3γ+1− 144κA2 dA, (39)

This integral can be solved for particular cases of theγ parameter.
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Now, employing the Eqs. (2), (12), and (38) we will obtain the evolution for
the scale factor. The classical equation of motion is

12A

N

dA

dt
=
∏

A
= 12A

√
−1

3
3A2+ 8

3
πGMγ A−3γ−1− κ, (40)

in term of the “cosmic time”τ defined bydτ = N(t) dt, Eq. (40) is read how
(when we choose the gaugeN(t) = 1, this cosmic time is the physical timet).

dτ = dA√
− 1

33A2+ 8
3πGMγ A−3γ−1− κ

. (41)

3.1. Inflationary Scenario,γ = −1

Equation (41) for the inflation regime is written as

τ − τ0 =
∫ A

0

dx√(− 1
33+ 8

3πGMγ

)
x2− κ

= 1√
a1

ln

[
A+

√
A2− a2

2

]
(42)

wherea1 = − 1
33+ 8

3πGMγ anda2
2 = κ

a1
.

The inverse of Eq. (42) gives us the following structure for the scale factor
A(τ )

A(τ ) = 1

2

[
e
√

a1(τ−τ0) + a2
2 e−

√
a1(τ−τ0)

]
. (43)

The scale factor A(τ ) will have a inflationary behavior only if the parametera1À 1,
then the cosmological constant have the restriction value3 < 3(8

3πGM1− 1). If
the parameter 0< a1 < 1, the scale factor vanishes very fast.

For other scenarios and particular values inκ and3 = 0, we have the fol-
lowing:

1. For the dust case andκ = 0, we obtain the well-known solutionA ∝ t2/3

for N = 1.
2. Forγ = 1 andκ = 0, the scale factor have the traditional solutionA ∝ t1/3

for N = 1.
3. For radiation case andκ = −1, the behavior is

A(τ ) =
√

4(τ − τ0)2− 8

3
πGM1

3
. (44)

For the case ofκ = 0, A ∝ t1/2 for N = 1.

On the other hand, the master Eq. (41) can be solved for anyγ if the cos-
mological constant vanish, defining dτ = A3γ+2dT, having the following general
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solution in the timeT

A(T) =
(

3

8πGMγ

) 1
3γ+1

[{
4

3
πGMγ (3γ + 1)(T − T0)

}2

+ κ
] 1

3γ+1

(45)

The classical solutions obtained by this method perhaps coincide with these
obtained solving the Einstein field equation, but is not possible to know if the
quantum universe remains quantum forever for some case, because of the fact that
the WDW equation is not time-dependent.

4. CONCLUSIONS

We discussed quantum cosmology from the point of view of simple models
of minisuperspace. We found that the wave functions of the WDW equations in
question are mostly Bessel functions. For particular values of the parameterp that
measures the ambiguity of the factor ordering problem we obtained analytical re-
sults for a some scenarios of the universe possessing a cosmological constant. Only
in the case of stiff fluid, the cosmological constant can be positive or negative. In
the other cases, it can be only positive for physical reasons related to the scale factor
or the potential under consideration. It is well known that the WDW cosmological
equation is not an evolution equation and therefore the associated quantum states
do not evolve in time. A possible way out of this difficulty could be to connect
some parameters of the “quantum” WDW solutions with classical Einstein ones
by phenomenological restrictions imposed on the superpotential function, as we
did in this work. Using this method, we find the classical behavior for the scale
factor, analogous to that found by solving the Einstein equations.
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