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Classical Solutions From Quantum Regime
for Barotropic FRW Model
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The quantization of gravity coupled to barotropic perfect fluid matter field with a cosmo-
logical constant is carried out. The wave function can be determined for any curvature
indexx in the FRW minisuperspace model. The meaning of the existence of the classical
solution is discussed in the WKB semiclassical approximation.
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1. INTRODUCTION

It is a general belief that an initial singularity can be removed through the
employment of a quantum theory of gravity. However, there is no consistent theory
of gravity until now, and in this sense the problem of the initial singularity remains
of actuality.

Itis well known that is possible to construct a quantum model for the universe
as a whole, through the Wheeler—DeWitt (WDW) equation, based in the ADM
decomposition of the gravity sector, which leads to a Hamiltonian approach of
general relativity, from which a canonical quantization procedure can be applied
(Halliwel, 1991). Moreover, in the Hamiltonian formalism, the notion of time is
lost (Isham, 1992), but there are some proposals by which this notion of time can be
recovered (Schutz, 1970, 1971) by coupling of the gravity sector to a perfect fluid.
In this scheme, called Schutz’s formalism, a quantization procedure is possible,
and the canonical momentum associated with the perfect fluid appear linearly in
the WDW equation, permiting to rewrite this equation in the form a &aimger
equation with a time coordinate associated with the matter field.

Recently, a convincing quantum gravity origin for inflation has been sought.
According to Bojowald (2002) a nonperturbative approach would produce the
most reliable answer as to whether or not inflation can be derived from quantum
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gravity. At the less ambitious level of minisuperspace quantum cosmology the
generality of inflation as well as the quantum creation of the universe should be
treated by analyzing the WDW equation and its physical solutions, the so-called
wave functions of the universe (Gibbons and Grishchuk, 1989).

In this way, the behavior of the scale factor may be determined in two different
forms from the quantum regime: when the wave function is time-dependent, we
can calculate the expectation value of the scale factor, in the spirit of the many
worlds interpretation of quantum mechanics (Tipler, 1986)

A, _ Jo WA (A DADY(A ) dA
A= T W(A=(A, )W (A 1) dA

whereW(A) is a weight function that normalizes the expectation value. The other
way is to apply the WKB semiclassical approximation, in which case the system
follows a real trajectory given by the equation

o
[e =3¢ (2)

where the index] designates one of the degrees of freedom of the systempand
is the phase of the wave function when written as

: @

v =Wé?, (3)

the functionsW and® are real functions. We follow this last procedure to obtain
the classical behavior for the scale factor, using the FRW model with a barotropic
perfect fluid and cosmological constant.

The work is organized as follows. In next section we describe the quan-
tum model with a solution for any case in the minisuperspace, considering a
barotropic perfect fluid as matter field including the cosmological constant. In
Section 3, we present the classical evolution for the scale factor derived following
the semiclassical WKB procedure. Section 4 is devoted to conclusions.

2. QUANTUM MODEL

The total Lagrangian for a barotropic perfect fluid coupled to gravity using
the FRW geometry with the classical cosmological constant term is given by

ﬁtotal = Egeom"‘ Ematter (4)

namely

6A2 d2A 6A<dA)2 6A2dAdN
dt

Loeom= v =(40[R = 2A] = =~z — ¢ N dt dt

—6kNA—2NAA3
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d /—6A2A\ 6A (dA\?
= — — (=) —6«kNA—2NAA3
dt< N >+N(dt> 6 ’ ®)

and the Lagrangian matter density (Pazos, 2000; Ryan, 1972)

Lunatier= v/=(@)g[167 G No{(y + 1)(1+ ¢""UkUnm)? — ¥ (L + ¢"UUnm) 2}
—167Gp(y + 1)UmN™]. (6)
These results are obtained by employing the ADM form of the FRW metric

1

whereN is the lapse functionA is the scale factor of the model, ands the cur-
vature index of the universe (= 0, +1, —1 plane, close and open, respectively).
We also make use of the usual perfect fluid energy—momentum tensor

wherep, p, U, are the pressure, energy density, and the four-velocity of the cos-
mological fluid, respectively; and using the barotropic relationghip y o, y =
constant, we have the solution for the energy density as a function of the scale
factor of the FRW universe, in the usual way
MV
p = m, (9)

2
ds? = —N2dt? + A? L + r2(d92 + Sm29d02) ) (7)
—kr?

whereM,, is an integration constant. arerwe also choose the comoving fluid
(three-velocityUyx = 0), and the gaughl® = 0, obtaining

Lmatter= 161 GN M, A=% . (10)
Thus, the total Lagrangian density has the following form:

d /—6A%2A\ BA [dA\?
- (== (=Z) —6kNA—2NAA3+1 NM, A",
Lo dt( N >+N<dt> B +16rGNM,
(11)

Following the well-known procedure to get the canonical Hamiltonian function,
we define the canonical momentum conjugate to the generalized coordinate
(scale factor) as

[1.= g_;, (12)

1, A 1. A ITa 3 -3
(13)
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when

H= I +6cA+2AA° — 161GM, A%, (14)
24A
Performing the variation of (13) with respectitio % = 0, implies the well-known
result = 0. Imposing the quantization condition and applying this Hamiltonian
to the wave functiond, we obtain the WDW equation in the minisuperspace

~ 1 d? -
HIW) = 24A[ Jp + 144 A2 + 48A A" — 384t GM, A | |w) =0
(15)

Notice that in principle the order ambiguity in Eq. (15) should be taken into
account. This is quite a difficult problem to be treated in all its generality, since the
Hamiltonian operator in (15) must be written in a very general form to take into
account all possible order, but, at least in the minimal case in which (Hartle and
Hawking, 1983) (there are other possibilities depending on different considerations
on the operators, see the works of Christodoulakis and Zanelli, 1984a,b or Lidsey
and Moniz, 2000
_,d2y Lp A, ,dVW d?w _,dw

Ao TN TN TaA A (dA2 PA dA)
where the real parametgrmeasures the ambiguity in the factor ordering. There-
fore, the WDW equation can be written as follows:

(16)

d?w  dw
~Ag T Pgx VAL =0, (17)
where
V(A) = —48AA° + 3841GM, A~ +2 — 144¢ A, (18)

In the following we discuss some of the quantum solutions of Eq. (17) for
particular values of thg parameter and the parameteof factor ordering.

2.1. Inflationary Scenario

In the inflationary era, including the cosmological constantwe choose
y = —1. Notice that the WDW Eq. (17) can be written as

d2w dw
T Pgat 144A3(M? A% — k)W = 0, (19)
where

A 8
m? = -3+ énG M_1. (20)
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The latter relationship leads to three possible cases
1.m?> @
The differential equation for this subcase is
AV, — P’ + 144¢ A3S(M? A2 — k)W_; =0 (21)

which, after the substitutions = m*A2 — «, W_; = v¥/2y(v), andz = ,v%/?,
turns forp = 1 into a Bessel equation with the general solution

4
W_y = (M2AZ — )2 [201(2) +bod_1(2)], where z= ﬁ[m2A2 —k]¥?

(22)
whereay andbg are superposition constants.
2.m?< 0
The differential equation for this subcase is
— AV + pW’ 4+ 144 A3(ImP| A 4+ k)W_; = 0. (23)

For p = 1 we have a modified Bessel equation with the general solution
4

Wy = (Im? A% + 1) [l (2) + biK3 ()], where z= Fz'[|m2|A2 + %2,
(24)
wherea; andb; are superposition constants.
3.m*=0
The differential equation for this situation is
—AV” 4 pY |+ 144 A3V =0 (25)
which forx = 1, has as solution the modified Bessel functions of ovderl%p
Wy = A%[Aol,(6A%) + BoK,(6A7)], (26)

where Ay and By are superposition constants, while for= —1, the solution
become to be the ordinary Bessel functions

W_; = A*[AgJ,(6A%) + BLY,(6A%)], (27)

whereA; andB; are superposition constants.

2In generalm? is not a positive constant, see the corresponding definition (20).
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2.2. Inflationary-Like Scenario,y = —1

In this particular case, the WDW equation becomes

d?v  dw ,

which, after the substitutions = AA? — g, ¥ = v¥/2y(v), and z = ‘g—fvm,
yields for p = 1 a Bessel equation with the general solution

\IJ(A) — [AA2 _ g]1/2 lCOI% ( \/§[AA2 ]3/2>

+CiKy <4‘/—[AA2 g]3/2)} ) (29)

whereCy andC; are superposition constants.

2.3. Dust Case4¢ =0,k = 0)
For this case the WDW equation is
d2w dw
— - 48A%(— A A% +87GMo)W =0, 30
G2z~ Pga TABA(—AA’ +87GMo) (30)

Making the transformations = 2\/3AA3 andv = e‘%zu(z), one gets fou(z)
the confluent hypergeometric equation
2u du
— - =0 31
25z tr—2g —mu (31)

wherem = %2 — L&'\"O andy = ZP. The linear independent solutions are

(Gradshteyn and Ryzhik, 1980)
ui(2) = 1Fi(m, y;2) (32)
U(2) =" Fim—y +1,2—y;2) (33)

where; F; is the degenerate hypergeometric function.
Thus, the exact solution fob becomes

W(A) = e #7[Agus(2) + BoUx(2)], (34)

whereAy and By are superposition constantg,andu, are the functions given in
(32) and (33), respectively.
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2.4. Stiff Fluid Case & = 1,k = 0)

The WDW equation
d2w dw
% pﬁ+48(—AA5+8nGM1A_1)\If =0, (35)

has the following exact solution

/ 2
W(A) = AT Z, (4 34 A3) , with v = %\/<E> — 3847 G M,.

3 2
(36)
The exact expression of the wave function depends on the sign of the cosmo-
logical constant and the order

e A > 0 andv real, the function&, become the modified Bessel functions,
eitherl, or K,,, depending on the boundary conditions.

e A < Oandv real, the functiong, turn into the ordinary Bessel functions,
eitherJ, orY,, depending on the boundary conditions.

e A > Oandv pure imaginary, the functions, become the modified Bessel
functions of pure imaginary order (Dunster, 1990), either K,,, depend-
ing on the boundary conditions.

e A < 0andv pure imaginary, the functionsg, become the modified Bessel
functions of pure imaginary order (Dunster, 1990), eitheor Y,,, depend-
ing on the boundary conditions.

3. THE CLASSICAL BEHAVIOR FROM WKB REGIME

Interesting results can be obtained at the level of WKB method if one performs
the transformatiofi] , — g—i. Then, (14) becomes the Einstein—Hamilton—Jacobi
equation, whereb is the superpotential function that is related to the physical
potential under consideration.

Introducing this ansatz in (14) we get

1 | /dd)?
= >iA |:<d_A> + 144c A? + 48A A* — 3847 G MyA3V+1:| =0, (37)

thus, we obtain
do
dA= \/—48A A*+3841GM, A=3r+1 — 144 A2 (38)

the superpotentiab has following form:

&=+ / J/4BAAY 1 384G M, A3+ — 144c AZdA (39)

This integral can be solved for particular cases ofythmarameter.
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Now, employing the Egs. (2), (12), and (38) we will obtain the evolution for
the scale factor. The classical equation of motion is

12AdA 1 8
e — _TAA2 4 2 —3y—1 _
= dt _HA_12A\/ SAA? + ZTGM, A 1k, (40)
in term of the “cosmic time™ defined bydr = N(t)dt, Eq. (40) is read how
(when we choose the gaugt) = 1, this cosmic time is the physical tinhg
dA
dr = . (42)
\/—%AAz + %nGMV A-3r=1

3.1. Inflationary Scenario,y = —1
Equation (41) for the inflation regime is written as

A dx 1
—10= =——In[A+,/A2— 2} 42
T /0 \/( %A 3 vai n|: %] 42

§71GMV) X2 —

wherea; = —2A + 87GM, andaZ =
The mverse of Eq (42) gives us the following structure for the scale factor
A(7)

1
A(x) = E[eﬁl(f—fw +ae VAl (43)

The scale factor A() will have a inflationary behavior only ifthe paramegers> 1,
then the cosmological constant have the restriction value 3(§nGM1 —1).If
the parameter & a; < 1, the scale factor vanishes very fast.

For other scenarios and particular valuegiand A = 0, we have the fol-
lowing:

1. For the dust case ard= 0, we obtain the well-known solutioA o t%/3

for N = 1.
2. Fory = 1andk = 0, the scale factor have the traditional solutionc t1/3
for N = 1.

3. For radiation case and= —1, the behavior is

A(T)=\/4(r—ro)2— gnGM%. (44)

For the case of = 0, A  t¥2for N = 1.

On the other hand, the master Eq. (41) can be solved fonaifighe cos-
mological constant vanish, defining & A% *2dT, having the following general
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solution in the timer

3 \#[(4 2 ¥
A(T) = <&TGMV> |:{§7rGMy(3y+l)(T—To)} +Ki| (45)

The classical solutions obtained by this method perhaps coincide with these
obtained solving the Einstein field equation, but is not possible to know if the
guantum universe remains quantum forever for some case, because of the fact that
the WDW equation is not time-dependent.

4. CONCLUSIONS

We discussed quantum cosmology from the point of view of simple models
of minisuperspace. We found that the wave functions of the WDW equations in
guestion are mostly Bessel functions. For particular values of the paraptbizt
measures the ambiguity of the factor ordering problem we obtained analytical re-
sults for a some scenarios of the universe possessing a cosmological constant. Only
in the case of stiff fluid, the cosmological constant can be positive or negative. In
the other cases, it can be only positive for physical reasons related to the scale factor
or the potential under consideration. It is well known that the WDW cosmological
equation is not an evolution equation and therefore the associated quantum states
do not evolve in time. A possible way out of this difficulty could be to connect
some parameters of the “quantum” WDW solutions with classical Einstein ones
by phenomenological restrictions imposed on the superpotential function, as we
did in this work. Using this method, we find the classical behavior for the scale
factor, analogous to that found by solving the Einstein equations.
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